Advancing Epigenetics Towards Systems Biology

Genome engineering

Elphège P. Nora, Edith Heard

Introduction

The recent development of custom designed nucleases, such as Zinc-Finger Nucleases (ZFN), Transcription Activator-Like Effector Nucleases (TALENs) and the Clustered Regularly Interspaced Short Palindromic Repeat Associated system (CRISPR/Cas9) has opened up exciting opportunities to edit genomes in a wide range of organisms (Joung and Sander, 2013 for review). Knocking out protein-coding genes can be easily achieved by using just one pair of such dimeric nucleases, to target the first coding exon, thereby introducing short indels that result in a translational frameshift. Several reports have also demonstrated the possibility to target larger genomic rearrangements by using two pairs of nucleases (Carlson et al., 2012; Gupta et al., 2013; Lee et al., 2011). Although homologous recombination mediated genetic engineering is feasible in some systems, such as mouse embryonic stem cells, this approach requires multiple steps, including the selection of drug-resistant clones, and can be laborious depending on the target and nature of the targeting. This approach is being rapidly superceded by the advent of custom ZFN, TALEN and CRISPR/Cas9 technologies, which enable the extremely rapid and efficient disruption of not only coding, but also non-coding elements, by creating deletions, or by changing local genomic organization by creating inversions.

PDF version

Elphège P. Nora, Edith Heard

Institut Curie, 26 rue d'Ulm 75005 Paris France

Corresponding author: Elphège P Nora, Edith Heard
Email feedback to: This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.

20130507072445 p62