Advancing Epigenetics Towards Systems Biology

Premio Nobel all’ epigenetica


Ver-Caenorhabditis-elegans891892

Che cosa hanno in comune la petunia e il millepiedi ? Alla vista appaiono diversi, al tatto sono diversi, all’olfatto odorano diversamente…o perlomeno una persona penserebbe così. Entrambi i sistemi però hanno portato gli scienziati a scoprire un nuovo modo di spegnere l’espressione genica. La natura si serve di numerosi metodi per silenziare i geni, un mezzo molto astuto che permette allo stesso genoma di usufruire di molteplici modi di espressione, o epigenomi in un unico organismo.

Traduzione :: Manuela Portoso (Institute of Human Genetics, CNRS, Montpellier)

Uno di questi trucchi, l' interferenza a RNA, (RNA interference) è diventato di dominio pubblico da quando Andrew Fire (Stanford, CA) e Graig Mello (Massachuttes, MA) hanno ricevuto in modo congiunto il premio nobel per la medicina grazie al loro lavoro sull'azione dell' interferenza a RNA nel verme Caenorhabditis elegans. Una lettera spedita alla rivista Nature nel 1998, ha rivelato la loro eclatante scoperta.

Marijori Matze (Instituto Gregor Mendel, Vienna) ha dichiarato che strani casi di silenziamento genico sono stati scoperti in piante transgeniche un decennio precedente. Il suo gruppo di ricerca ha pubblicato nel 1989 un lavoro in cui piante di tabacco erano in grado di silenziare transgeni presenti in due copie mentre questo fenomeno non si verificava in piante con una sola copia.

L' anno seguente, un gruppo olandese e uno americano generavano contemporaneamente simili strani risultati, in una ricerca condotta con lo scopo di aumentare il colore dei petali della petunia. Piuttosto che aumentare il color viola del fiore della petunia, l'aumento del numero di copie del gene responsabile del colore del fiore provocava una splendida varietà di fiori, alcuni con sprazzi di viola su sfondo bianco altri completamente bianchi. Quando i ricercatori hanno esaminato i livelli di RNA espressi dal gene responsabile per il color viola, i fiori bianchi avevano un livello molto basso. Questo risultato ha portato alla conclusione che le copie in più del gene determinavano lo spegnimento del gene endogeno stesso.

Altre importanti scoperte sono state compiute grazie a ricerche condotte in piante negli anni novanta. Verso la fine degli anni novanta, Fire e Mello, hanno cominciato a scoprire i meccanismi sottostanti questo misterioso sistema per spegnere i geni. Iniettando dell' RNA a singolo filamento trascrivente il gene di un muscolo di un verme non hanno ottenuto alcun effetto e nemmeno quando hanno provato a iniettare dell'RNA a singolo filamento antisenso. Tuttavia quando hanno iniettato entrambi i filamenti di RNA senso e antisenso contemporaneamente, il verme ha cominciato a perdere tono muscolare. I due filamenti senso e antisenso di RNA, formavano un doppio filamento di RNA (dsRNA) che interferiva con la traduzione del gene del muscolo in proteina.

Subito dopo, David Baulcombe e Andrew Hamilton (Centro John Innes, Norwich, UK) hanno apportato ulteriori elucidazioni su questo meccanismo. Hanno scoperto che il dsRNA veniva spezzato in piccoli frammenti (siRNAs) responsabili del silenziamento genico. In particolare il dsRNA viene tagliato da una proteina chiamata dicer. I piccoli RNAs diventano a singolo filamento quando si legano a complessi di proteine dai quali protrudono per trovare molecole di RNA complementari. L' mRNA complementare che sta per venir tradotto in proteina, viene riconosciuto e degradato. In questo modo il gene viene inattivato.

Sia in animali che in piante l’RNAi rappresenta una difesa naturale contro l’invasione da materiale genetico, sia introdotto artificialmente, come negli esperimenti citati, che in natura, attraverso l’infezione virale. Inoltre questo sistema rappresenta uno dei tre metodi per regolare il silenziamento genico durante lo sviluppo. Oltre al suo naturale ruolo, l’RNAi può avere un’ incredibile applicazione nel campo medico. Essere in grado di colpire e silenziare geni espressi erroneamente, rappresenta un’ enorme speranza per il trattamento di malattie a carattere genetico. E senza vermi e petunia non ce ne saremmo accorti

Mon, May 29th 2017- Wed, May 31st 2017

After last year's successful kick-off meeting, the EpiGeneSwiss meeting will take place again in Weggis, Switzerland. This year we have added one day in addition to accommodate more topics and more t...

Mon, Jun 19th 2017- Wed, Jun 21st 2017

The focus of the 2017 IMB Conference is on “Gene Regulation by the Numbers: Quantitative Approaches to Study Transcription”. The conference will explore the latest findings and technological developme...

Tue, Jul 11th 2017- Thu, Jul 13th 2017

The MRC Integrative Epidemiology Unit at the University of Bristol invites all professionals interested in aetiological epidemiology and Mendelian randomization to attend our conference on the subject...

Wed, Aug 30th 2017- Fri, Sep 1st 2017

The nucleosome is the fundamental building block of chromatin organisation and genome function. The 20th anniversary of the high resolution nucleosome structure marks a milestone for bringing together...

LAST EVENTS

EpiGeneSys Final
Meeting in Paris

Thur. 11 February 2016 - Sat. 13 February 2016

More than 280 scientists attended the fifth Annual Meeting of EpiGeneSys. The conference kicked off with a talk by coordinator Geneviève Almouzni, Director of the Research Center at the Institut Curie, highlighting the achievements of the network over more than five years...

Maison des océans - Paris Read more

PAST EVENTS

The Non-Coding Genome ...

December 3-4 th, 2015

The last training workshop of the EpiGeneSys network

Hotel Mediterraneo - Rome, Italy Read more

Paris / TriRhena Chromatin Club

July 9th, 2015

...exciting talks and network with members of the Chromatin community!

... An EpiGeneSys TAB workshop

June 11st-12nd , 2015

... learn about current approaches to single cell epigenetics and to meet up and network with...

Montpellier, FranceRead more

Latest publications

2017-04-30

The impact of rare and low-frequency genetic variants in common disease.

Read more
2017-04-25

Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila.

Read more
2017-04-25

Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila.

Read more