4 Post doctoral positions

Guido KROEMER laboratory
Institute Gustave Roussy
Paris

4 post doctoral positions are available to study novel strategies of immunotherapy.

Our laboratories pioneered the hypothesis that successful chemotherapies must induce an anticancer immune response. We are presently working on the relationship between different types of cellular stress (tetraploidization, endoplasmic reticulum stress, autophagy), immunogenic cancer cell death, alterations in the gut microbiota and systemic changes in the immune system occurring in the context of conventional and targeted antineoplastic therapies. Our goal is to apply the knowledge generated through fundamental approaches to biomarker discovery and the design of novel therapeutic strategies in the field of oncology.

Our internationally competitive laboratories are equipped with state-of-the-art technical facilities including high-throughput microscopic, cytofluorometric and metabolomics platforms.

- We seek candidates with a publication track record proving previous experience in successful scientific endeavours (with at least two papers in journals with an impact factor higher than five).
- The candidates should have a strong background in molecular oncology, cell biology, cellular imaging, or immunology, embracing both technological and conceptual skills.
- One candidate should be a trained bacterial microbiologist.
- The candidate must be fluent in English.

Position will be available immediately for 2-3 years.

Applicants should send a motivation letter, CV, list of publications, and contact information for three references to Dr. Guido Kroemer (kroemer@orange.fr) and Dr. Laurence Zitvogel (zitvogel@igr.fr).
Post doctoral positions

Genevieve ALMOUZNI laboratory
Institute Curie
Paris

Our lab has a longstanding interest in the role of chromatin regulators, including histone chaperones and histone variants, in shaping the chromatin landscape to maintain chromatin integrity. In one example, the centromere-specific H3 histone variant CenH3, known as CENP-A in mammals, is overexpressed in aggressive cancers, raising questions concerning the effect on chromatin dynamics and a contribution to tumorigenesis. Indeed, we recently reported that CenH3 overexpression in human cells leads to ectopic enrichment at sites of active histone turnover. This aberrant localization, which depends on the H3.3 chaperone DAXX rather than the dedicated CenH3 chaperone HJURP, affects gene expression and the cellular response to DNA damage (Lacoste et al., 2014). Additionally, we have identified that several chromatin regulators, including the histone chaperone ASF1, have prognostic value in breast cancer (Corpet et al., 2011). Ongoing projects aim to further elucidate the role of chromatin regulators in shaping the chromatin landscape, how perturbations may impact tumorigenesis, and how this knowledge can be translated to the clinic.

Candidates should be highly motivated, independent, and demonstrate a collaborative spirit. Spoken and written English is a prerequisite.

Applicants should send a motivation letter, CV, list of publications, and contact information for three references to Dr. Genevieve Almouzni (Genevieve.Almouzni@curie.fr)
Post doctoral positions

Hugues De THE laboratory
Saint Louis Hospital
Paris - France

We have recently reported (Ablain, Nature Medicine 2014), that PML/RARA degradation by retinoic acid or arsenic underlie their curative effects on acute promyelocytic leukemia. This is enforced by PML activation of P53 and a senescence-like mechanism. We have post-doctoral positions available to understand the molecular basis for P53 activation by PML and the resulting elimination of leukemic cells in vivo.

Candidates should have good publication records in cellular and molecular biology. They must also be familiar with animal work. English language is a prerequisite.

Applicants should send a motivation letter, CV, list of publications, and contact information for three references to Dr. Hugues de Thé (dethe@univ-paris-diderot.fr).

INSERM U944, CNRS 7212, Hugues de Thé
Hôpital St. Louis, Paris
Investigating APL pathogenesis
We have a 2 years post-doc position starting from September 2015.

Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults, is characterized by a clonal expansion of mature lymphoid B cells and their accumulation in blood and lymphoid tissue. The molecular changes driving the disease pathogenesis are still poorly understood. Besides chromosome aberrations affecting chromosomal structure or karyotypic integrity (Döhner et al., New Engl J Med 2000), the genomes of CLL are also characterized by exceedingly high frequencies of nucleotide point mutations (Puente et al., Nature 2011), strongly supporting the notion that CLL expresses a mutator phenotype (Loeb, Nature Review Cancer 2011). The aim of this project is to demonstrate that the increased somatic mutation rate and chromosomal aberration in CLL results from the alteration in the expression/regulation of DNA Replication factors, and that by assessing the expression profile of these replication factors, one could predict a survival benefit from chemotherapy based on nucleotide analogs, such as fludarabine, but also cytarabine, otherwise used as a first line treatment of CLL. This will provide the clinicians with novel prognostic markers to predict patient survival, therapeutic response and time to progression, thereby facilitating their decision in designing an appropriate therapeutic approach.

Part of the project will also decipher the mechanisms involved by demonstrating the existence of a modified DNA replication program in CLL cells at all the regulation levels: origin firing; fork progression and replication checkpoint.

Applicants should send a motivation letter, CV, list of publications, and contact information for three references to Dr. Christophe Cazaux (cazaux@ipbs.fr).
A two-year post doctoral position

Fuyuki ISHIKAWA laboratory
Kyoto University
Kyoto – Japan

PI: Fuyuki Ishikawa
Laboratory of Cell Cycle Regulation, Kyoto University Graduate School of Biostudies

Subjects:
Telomere maintenance in either fission yeast or mammals OR Chromatin regulation during stress responses in mammals

At this time a two-year PD position will be offered. Further extension will be decided upon evaluation of the PD at the end of the period.

Candidates familiar with either yeast genetics OR general cell/molecular biology in mammals are welcome.

Mailing address:
Prof. Fuyuki Ishikawa
Kyoto University
Graduate School of Biostudies
G-405, Yoshida-Konoe-Cho,
Sakyo-ku, Kyoto
606-8501 Japan