Advancing Epigenetics Towards Systems Biology

Sofia Kovalevskaya

The right equation

Name: Sofia Kovalevskaya
Nationality: Russian
Lived: 1850-1891
Fields: Mathematics and mathematical physics
Claim to fame: Innovative theories on differential equations and the rotation of a rigid body

During her short life, Sofia Kovalevskaya (1850-1891) had a remarkable career in mathematics, despite the many personal tragedies she endured. Overcoming the prejudices of her age, she came up with groundbreaking mathematical theories and paved the way for future discoveries. She was the third woman in Europe to get a regular chair in mathematics.

The calculus on the wall

Sofia Vasilyavna Korvin-Krukovsky was the middle child of Vasily Korvin-Krukovsky, a general in the Russian army, and Velizaveta Shubert, who were both well-educated members of the nobility. Born in Moscow on 15 January 1850, Sofia was also sometimes known as Sonya and, in her professional life, used the masculine form of her husband’s surname to avoid revealing her gender in publications.
Attracted to mathematics at a young age, Sofia was educated by tutors and governesses at the family’s estate, Palabino, and later in St Petersburg. She was greatly influenced by her uncle, Pyotr Vasilievich Krokovsky, who had a keen interest in mathematics and often spoke to Sofia on the subject. At the age of 11, Sofia papered the walls of her room with pages of lecture notes on differential and integral analysis, which provided the young mathematician with an introduction to calculus.

From Russia with love

Upon finishing her schooling, Sofia’s ambition was to study mathematics at university. Knowing that this was impossible for a woman in Russia, she formulated a plan to travel to western Europe. As young, unmarried girls were not allowed to travel alone without permission from their father, Sofia entered a marriage of convenience with Vladimir Kovalevsky, then a young palaeontology student. In 1869, they left Russia and travelled to Heidelberg, Germany, where Sofia hoped to study mathematics and natural sciences. On arrival, she was informed that women were not allowed to enrol in courses, but she lobbied the university’s authorities who eventually permitted her to attend lectures and seminars in physics and mathematics.
In 1871, Sofia moved to Berlin where she studied privately with the great calculus expert Karl Weierstrass. By the spring of 1874, she had completed three papers, all of which Weierstrass considered worthy of a doctorate. Later that year, on Weierstrass’ initiative, the University of Göttingen awarded her (in her absence and therefore without a defence) a doctorate, summa cum laude, for her work on partial differential equations.
Sofia began to look for an academic post but was informed that the best she could do would be teaching arithmetic to schoolgirls. Returning to Russia, the situation was no better and, disillusioned, Sofia abandoned her mathematical work for six years. During this time, the marriage of Sofia and Vladimir turned into love, and they had a daughter, also called Sofia. Moreover, they became involved in various business ventures. When these schemes collapsed, in 1883, Vladimir committed suicide.

The lady professor

By the time of Vladimir’s death, Sofia had resumed her mathematical work on a private basis. She presented a paper on Abelian integrals at a scientific conference in 1880, which was very well received. In 1882, Sofia began to work on the refraction of light, writing three articles on the topic. The following year, she got the break she needed to get into the academic world when she received an invitation from a mathematician who had met her at the conference in 1880, Gösta Mittag-Leffler, to lecture at the University of Stockholm on a temporary basis. During her time in Sweden, Sofia taught courses on the latest topics in analysis and carried out important research. After fi ve years, she was appointed as a professor, making her the first woman since Laura Bassi and Maria Gaetana Agnesi, in the 18th century, to hold a chair at a European university.

The body mathematic

Whilst at the University of Stockholm, Sofia was appointed editor of a new journal, Acta Mathematica, and also became involved in the organisation of international conferences. Her greatest triumph came in 1888 when her paper ‘On the rotation of a solid body about a fi xed point’ won the prestigious Prix Bordin, organised by the French Academy of Sciences. So impressed was the Academy by the work that they increased the prize money from 3 000 to 5 000 francs. Her work was particularly innovative because existing solutions for the motion of a rigid body around a fi xed point had been developed for cases where the body is symmetric; Sofia’s paper developed a theory for an unsymmetrical body, where the centre of mass is not on an axis in the body.
In 1888 she began a ‘scandalous’ affair with Maxim Kovalevsky, the nephew of Vladimir, and in 1891 she travelled to Paris to meet him. Whilst there she contracted influenza, complicated by pneumonia, which led to her death on 10 February.

Scientific achievements

though her life was cut short, Sofia Kovalevskaya’s career was a remarkable one. Although she published only ten papers on mathematics and mathematical physics, many of these included ground- breaking
theories or the impetus for future discoveries. Her early work on the theory of differential equations was a particularly valuable contribution to mathematics and led to what is now known as the Cauchy-Kovalevsky theorem for analytic partial differential equations. Kovalevskaya’s other great breakthrough was her paper on the rotation of an unsymmetrical solid body around a fi xed point, now known as the Kovalevsky top. Her further research on the topic won her a prize from the Swedish Academy of Sciences in 1889. Sofia was able to overcome the general objections to women in science by demonstrating her intelligence and her groundbreaking work in mathematics. She was rewarded with a professorship and a role editing a mathematical journal. Perhaps her most lasting influence, however, was the example she set for other women trying to enter academia.

Mon, Jun 25th 2018- Fri, Jun 29th 2018

The 3rd European Summer School on Nutrigenomics aims to give new inside the modulation of the epigenome by nutrition and xenobiotics during early life and across the life span: the key role of life st...

Mon, Jun 25th 2018- Tue, Jun 26th 2018

Laboratory Medicine and Pathology 2018 will be held in Berlin,Germany,Europe during June 25-26, 2018 hosted by Conferences Series LLC. The conference is organized with the theme "Excavating laboratory...

Thu, Aug 16th 2018- Sat, Aug 18th 2018

Conference series cordially invites all participants across the globe to attend the 25th International Conference on Nano Congress for Future Advancements (Nano congress 2018) which is going to be hel...

Mon, Sep 3rd 2018- Wed, Sep 5th 2018

Endocrinology Congress 2018 welcome to the world largest gathering in the World Congress on Endocrinology and Metabolic Disorders with a theme “Exploring Novel Aspects in Endocrinology and Metabolic D...

  • Auckland, New Zealand


EpiGeneSys Final
Meeting in Paris

Thur. 11 February 2016 - Sat. 13 February 2016

More than 280 scientists attended the fifth Annual Meeting of EpiGeneSys. The conference kicked off with a talk by coordinator Geneviève Almouzni, Director of the Research Center at the Institut Curie, highlighting the achievements of the network over more than five years...

Maison des océans - Paris Read more


The Non-Coding Genome ...

December 3-4 th, 2015

The last training workshop of the EpiGeneSys network

Hotel Mediterraneo - Rome, Italy Read more

Paris / TriRhena Chromatin Club

July 9th, 2015

...exciting talks and network with members of the Chromatin community!

... An EpiGeneSys TAB workshop

June 11st-12nd , 2015

... learn about current approaches to single cell epigenetics and to meet up and network with...

Montpellier, FranceRead more

Latest publications


The Histone Acetyltransferase Mst2 Protects Active Chromatin from Epigenetic Silencing by Acetylating the Ubiquitin Ligase Brl1.

Read more

Proliferation Drives Aging-Related Functional Decline in a Subpopulation of the Hematopoietic Stem Cell Compartment.

Read more

The impact of rare and low-frequency genetic variants in common disease.

Read more