Advancing Epigenetics Towards Systems Biology

What is Epigenetics?

wie 01

How does the cell know what parts of the information to access in order to produce what it needs?

November 2012

Written by Alysia L. vandenBerg, PhD

Imagine that you are on a journey, visiting the nucleus of a cell of the human body. We can think of the nucleus as the "inner city". In terms of activity, the inner city resembles an ant colony on caffeine—it's incredibly busy. Access to the inner city is guarded; only certain materials are let through to the information and production headquarters housed there. About 40 miles of information, coded onto fine thread is crammed inside the inner city, but it's only about the size of a tennis ball. The knowledge of how to produce about 23,000 products (proteins) is encompassed within this coded information (DNA), but the city only really produces around 10-20% of that for day-to-day business. How does the inner city know what parts of the information to access in order to produce what it needs? And how is this knowledge then remembered or maintained, from day to day, year to year, in order to avoid chaos? Researchers studying epigenetics are interested in exactly this type of question: how does a cell know which parts of the genetic information that's encoded in a cell's DNA to access in order to produce what it needs, and once these decisions are made how can they be perpetuated, or else changed, if necessary?

The roots of the term epigenetics go all the way back to Aristotle, who coined the term epigenesis. Epigenesis was used in opposition to the theory of preformation, which posited that all living organisms existed in miniature inside of the sperm (or the egg), and merely expanded in size over time [link]. In contrast, the theory of epigenesis proposed that embryos began as an undefined mass with new parts added during development (1). Conrad Waddington, described as a "renaissance biologist" (2), was a 20th century scientist-philosopher who built on Aristotle's early notions about animal development. He is credited with using the term epigenetics in the context of development, describing it as, "the branch of biology which studies the causal interactions between genes and their products, which bring the phenotype into being" (2). This was a rather prescient observation, considering that the structure of DNA was not even known at that time.


1. J. M. Slack, Conrad Hal Waddington: the last Renaissance biologist? Nat Rev Genet3, 889 (Nov, 2002)

2. C. H. Waddington, Canalization of development and genetic assimilation of acquired characters. Nature 183, 1654 (Jun 13, 1959)

Mon, May 29th 2017- Wed, May 31st 2017

After last year's successful kick-off meeting, the EpiGeneSwiss meeting will take place again in Weggis, Switzerland. This year we have added one day in addition to accommodate more topics and more t...

Mon, Jun 19th 2017- Wed, Jun 21st 2017

The focus of the 2017 IMB Conference is on “Gene Regulation by the Numbers: Quantitative Approaches to Study Transcription”. The conference will explore the latest findings and technological developme...

Tue, Jul 11th 2017- Thu, Jul 13th 2017

The MRC Integrative Epidemiology Unit at the University of Bristol invites all professionals interested in aetiological epidemiology and Mendelian randomization to attend our conference on the subject...

Wed, Aug 30th 2017- Fri, Sep 1st 2017

The nucleosome is the fundamental building block of chromatin organisation and genome function. The 20th anniversary of the high resolution nucleosome structure marks a milestone for bringing together...


EpiGeneSys Final
Meeting in Paris

Thur. 11 February 2016 - Sat. 13 February 2016

More than 280 scientists attended the fifth Annual Meeting of EpiGeneSys. The conference kicked off with a talk by coordinator Geneviève Almouzni, Director of the Research Center at the Institut Curie, highlighting the achievements of the network over more than five years...

Maison des océans - Paris Read more


The Non-Coding Genome ...

December 3-4 th, 2015

The last training workshop of the EpiGeneSys network

Hotel Mediterraneo - Rome, Italy Read more

Paris / TriRhena Chromatin Club

July 9th, 2015

...exciting talks and network with members of the Chromatin community!

... An EpiGeneSys TAB workshop

June 11st-12nd , 2015

... learn about current approaches to single cell epigenetics and to meet up and network with...

Montpellier, FranceRead more

Latest publications


The impact of rare and low-frequency genetic variants in common disease.

Read more

Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila.

Read more

Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila.

Read more